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We investigate the total asymmetric exclusion process by analyzing the dynam-
ics of the shock. Within this approach we are able to calculate the fluctuations
of the number of particles and density profiles not only in the stationary state
but also in the transient regime. We find that the analytical predictions and the
simulation results are in excellent agreement.
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1. INTRODUCTION

The total asymmetric exclusion process (TASEP) is maybe the most simple
lattice model of collective particle transport. (1–3) It can be interpreted, e.g.,
as a basic model of traffic flow (4) or as a model for biological transport. (5)

In generic steady states, these processes are characterized by a non-vanish-
ing mass transport which leads to an intrinsic non-equilibrium behavior.
This is interesting from a theoretical point of view. For example, the
stationary probabilities of the system are not given by an equilibrium
ensemble. Of particular interest are systems with open boundary conditions
because one can observe transitions between different bulk states induced
by tuning the boundary conditions. (6)

Another reason for the importance of the TASEP model is the possi-
bility to find an exact solution for the stationary state. This has been done
by solving recursion relations for the stationary partition function. (7–10)



Later a phenomenological approach, referred to as domain wall (DW)
theory, was proposed (11) which was able to reproduce the exact results for
the phase diagram, in the limit of large system sizes. (12) The interest of the
latter theory is twofold: First, it leads to an intuitive understanding of the
most important features of the system and second it can be generalized
to more complicated models which are out of scope for an exact treat-
ment. (13, 14)

In our article we test the accuracy of the DW theory for the TASEP
on finite open lattices. In particular we compare the stationary fluctuations
of the number of particles, which are related to the integrated two-point
correlation functions. Beyond that we also analyze the non-stationary
behavior of TASEP, which cannot be treated with exact methods. Rather
than investigating the relaxation spectrum of the process, (15) for which
numerical evaluation is limited to very small system sizes (L [ 10), we focus
on the dynamics of directly observable quantities. We calculated, e.g., the
time dependent density profiles, which can be compared easily to simula-
tions (which can be easily carried out on much larger system sizes).

The outline of this paper is as follows. In Section 2 we give a definition
of the model and remind briefly of the most important features of the DW
theory. Then we compare the predictions for the fluctuations of the number
of particles with simulation results. Finally (Section 4), we show how the
system responds to a change of boundary conditions.

2. THE TASEP WITH OPEN BOUNDARIES

2.1. Definition of the Model

The TASEP is defined on a one-dimensional lattice of length L. Each
lattice site (i) can be occupied by one particle (yi=1) or be empty (yi=0).
In continuous time the dynamics of the particles is defined as follows:
A pair of sites (i, i+1) is chosen with probability dt, where dt denotes an
infinitesimal time-step. If the site (i) is occupied and the site (i+1) is
empty one exchanges the positions of particle and hole. All other local
configurations are unchanged. In case of open boundary conditions one
additionally has to define the in- and output of particles. At a given time a
particle can be introduced on the first site with probability a dt if the first
site is empty. If the last site of the chain is occupied the particle may escape
from the chain with probability b dt.

The TASEP with continuous time dynamics can be implemented by a
random sequential update, i.e., one first chooses randomly a link between
two sites and then performs the local update. A possible implementation of
the open boundaries is to add two additional sites 0, L+1 to the chain,
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which are occupied with probability a and 1−b respectively, and act as
particle reservoirs. By definition, one time step includes L+1 link choices,
and the corresponding local updates.

For the TASEP it has been shown that the partition function, i.e., the
sum of all stationary weights for a system of size L+1, can be obtained
recursively from the results for a system of size L. (7, 8) The recursion rela-
tions have been solved exactly, (9) e.g., by means of a matrix representation
(MPA). (10) Now we shall discuss how most of these results can be recovered
using the DW theory.

2.2. Domain Wall Theory

The domain wall (DW) theory (11) gives a phenomenological description
of the system dynamics. The basic idea of this picture is that, as long as the
entrance (exit) capacity does not exceed the capacity of the chain, each
particle reservoir enforces a domain (of constant density) in the bulk. At
a given time both domains coexist in the chain. The coexistence of two
domains in the chain implies the existence of a shock, i.e., a region where
the two domains meet. In the domain wall theory one assumes that the
shock is sharp, i.e., that it has a finite width W. For a large class of driven
lattice gases this requirement is fulfilled and one has W° L already for
moderate system sizes L. After the introduction of the DW theory for the
TASEP it has also been successfully applied to models discrete in time and
without particle hole symmetry. (14, 18) Therefore the DW theory provides a
quite general theoretical framework for models of particle transport.

Below we now cite the ingredients of the DW theory which are of
relevance for the remaining part of the article. In this theoretical frame, the
dynamics of the shock determines the behavior of the system. A first
characterization of the shock dynamics is possible by means of the lattice
continuity equation

d
dt
r(i, t)=ji−1(t)−ji(t), (1)

where ji(t) denotes the local particle current at position i and time t and
r(i, t) the density at the same site. By evaluating this in the continuum limit
for the shock position one finds that the shock moves far from the bound-
aries with velocity

V=
j+−j−
r+−r−

, (2)
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where r+(r−) and j+(j−) are respectively the densities and fluxes in the
right (left) domains separated by the shock.

The motion of the domain wall can be interpreted as a random walk
with hopping rates

D+=
j+

(r+−r−)
, D−=

j−
(r+−r−)

(3)

for a move to the right (left). (11) In case of a blocked entrance or exit one
can easily verify that the dynamics of the domain wall is described cor-
rectly. In order to generalize this observation, one uses that both particle
reservoirs are independent. The interpretation of the shock dynamics as a
random walk allows for an easy calculation of several quantities of interest.

Now we specify the above quantities for the TASEP. An input rate a
leads to a bulk density r−=a and an output rate b to r+=1−b. Inside
each domain one obtains the same behavior as for the periodic system, e.g.,
one gets j=r(1−r) for the flow.

In case of the TASEP one obtains still good results if one assumes that
one can identify a single link as the position of the shock. The link is
labeled i if localized between sites i and i+1. Thus the wall location varies
from 0 to L for a lattice of L sites. On a finite system of size L the domain
wall performs a random walk in a lattice with reflecting boundary condi-
tions. Therefore the probability to find the domain wall at time t and posi-
tion i can be evaluated from:

dP(i, t)
dt

=D+P(i−1, t)+D−P(i+1, t)−(D++D−) P(i, t), (4)

for 1 [ i [ (L−1). At the (reflecting) boundaries one has

dP(0, t)
dt

=D−P(1, t)−D+P(0, t) (5)

dP(L, t)
dt

=D+P(L−1, t)−D−P(L, t), (6)

where D+=
b(1−b)
1−a−b and D−=

a(1−a)
1−a−b.

The stationary solution of Eqs. (4)–(6) in the low density phase a < b,
b [ 0.5 is given by P(i)=exp(−(L−x)/t)/N, where the localization
length is given by t=log(D+/D−) and the normalization N by N=
(1− exp(−(L+1)/t))/(1− exp(−1/t)). In the high density phase one
obtains analogous results by using the particle hole symmetry of the TASEP.
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By using choice (3) for the hopping rates, one recovers the exact result for
the localization length t.

3. PARTICLE NUMBER FLUCTUATIONS IN THE DOMAIN WALL

PICTURE

The fluctuations of the number of particles N=;i yi are defined as:

ODNP

L
=

ON2P−ONP2

L

=
1
L
52 C

i < j
OyiyjP+ONP−ONP26 , (7)

where the brackets O · · ·P denote an average over the stationary ensemble.
Equation (7) illustrates the connection between the fluctuations and the
two-point correlation functions. The fluctuations of the particle number, as
well as the complete large deviation function, can be calculated using the
exact stationary solution of the TASEP. (16) We show now, as a sensitive test
of the accuracy of the DW theory for finite systems, how the results of the
domain wall theory compare to the simulation results.

3.1. Particle Number Fluctuations and the Domain Wall Theory

We now proceed to calculate the relevant quantities in the framework
of the DW theory. The first quantity one has to calculate is the average
number of particles. In the low density phase the stationary probability to
find the shock at link i is given by P(i)=(1/N) exp(−(L−i)/t). In the
domain wall picture this means that one finds (L−i) r++ir− particles in
the systems. So by summing over all possible shock positions one gets

ONP=
1
N

C
L

i=0
e−(L−i)/t[(L−i) r++ir−]

=r−L+
d e−1/t(1−(L+1) e−L/t+L e−(L+1)/t)

(1−e−1/t)(1−e−(L+1)/t)
, (8)

where d=r+−r− denotes the density difference between the high and low
density domain which coexist.

Next we have to calculate the two point correlations OyiyjP for i < j.
This is done by averaging over the particle densities if the domain wall
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is located left from site i, between i and j, and right from site j, i.e., one
finds

OyiyjP=
r2−
N

C
i−1

k=0
e−(L−k)/t+

r−r+

N
C
j−1

k=i
e−(L−k)/t+

r2+
N

C
L

k=j
e−(L−k)/t. (9)

Using Eqs. (7)–(9) we get the following result for the variance of the
number of particles:

ODNP

L
=r−(1−r−)+

d

L
(1−2r−) e−1/t

1−e−(L+1)/t
11−e−L/t

1−e−1/t
−Le−L/t2

+
d2

L
e−2/t(1−e−2L/t)−2e−(L+3)/t(1−e−L/t)

(1−e−1/t)2 (1−e−(L+1)/t)2

−d2e−(L+1)/t
1+e−(L+1)/t+L
(1−e−(L+1)/t)2

. (10)

The corresponding results in the high density phase can be obtained by
applying the particle hole symmetry of the TASEP. On the coexistence line
(a=b) the localization length diverges and the fluctuations are given by:

ODNP

L
=
d

2
(1−2 r−)+(1−r−) r−+d2

(L−4)
12

. (11)

3.2. Comparison with Simulation Results

Figure 1 shows a comparison between the calculated values and simu-
lation results for the particle number fluctuations. The results are for
b=0.25 and different values of a surrounding the first order transition at
a=0.25. Our simulations start in the low density phase, cross the coexis-
tence line and end up in the high density phase. The agreement between
DW-theory and simulation results is excellent for larger system sizes. For
small system sizes one observes small deviations from the simulation
results, which are presumably due to the finite width of the shock.
Nevertheless, we stress the fact that the DW theory gives correct results
(i.e., within the accuracy of the simulations) already for systems of the
order of hundred sites.
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Fig. 1. Domain-wall prediction vs. simulation results of the particle number fluctuations
ODNP/L. The symbols correspond to simulations results of the finite chain. The predictions of
the domain wall picture are indicated by lines. We consider b=0.25 for all simulations. The
inset shows the relative deviations (ODNP−ODNPDW)/ODNP between simulations and domain-
wall predictions. For L \ 300 the deviations are smaller than the numerical precision of our
simulations.

4. NON-STATIONARY PROCESSES

The results for the stationary particle number fluctuations presented in
the previous section—for which an exact solution exists—have provided
a test for the accuracy of the domain-wall picture. But in contrast to the
exact stationary solution the domain wall picture also allows to charac-
terize the dynamics of the system in the transient regime.

4.1. Density Profiles

In order to check the correctness of the phenomenological picture we
investigated the time-dependent density profile interplaying between two
stationary states. We started from a stationary state in the low density
regime on the line a0+b0=1. Indeed, on this line, the exact stationary
solution has a simple product form, and the density profile is flat. (10) This
choice was made in order to keep the calculations simple, and to generate
easily a large number of independent configurations. Suddenly, we change
the output rate b such as to (i) lie on the coexistence line b=a=a0 or (ii)

The Asymmetric Exclusion Process Revisited 193



cross the transition line into the high density phase so that b < a=a0. We
take as the origin of time the moment when this change occurs. A large
number of independent simulations are performed in parallel. At regular time
intervals, an ensemble average of the density profile over the independent
simulations is performed. After some time, a new stationary state is reached.

In our simulations, we chose as initial condition a0=0.25, b0=0.75. At
t=0, a=a0 stays fixed, while b is varied to (i) b=0.25, or (ii) b=0.2, 0.1,
or 0.02. This change is instantaneous. The density profile is averaged every
100 time steps over 100,000 independent simulations, i.e., we took 100,000
arbitrary configurations from the initial stationary ensemble and performed a
simulation run for each initial configuration.

In the remaining part of this section we want to explain how this setup
can be described by means of the domain wall theory.

The chosen set of parameters ensures the absence of a shock in the
initial condition. By changing the right reservoir we introduced a shock at
position L and time t=0. In the course of time the motion of the wall then
follows a random walk described by Eqs. (4)–(6).

In case (i) the random walk is symmetric, because a=b and thus
D+=D− . An exact analytic solution for a random walk between two
reflecting walls, starting at r=0, is known for all times: (17)

P(i, t)=
1

L+1
31+C

L+1

n=1
exp 1 −2Dt 31− cos 5 pn

L+1
642

×5cos 1 ipn
L+1
2+cos 1 (i+1) pn

L+1
264 . (12)

At long times, the wall has a uniform probability to be located anywhere in
the system.

In case (ii), D+ and D− are different. The exact analytical solution of
the asymmetric random walk with reflecting boundaries is also known, (15, 17)

but for convenience we treated directly the discretized diffusion equation

P(i, t+dt)=D+dtP(i−1, t)+D−dtP(i+1, t)+[1−(D++D−) dt] P(i, t),
(13)

with equivalent expressions for the boundaries. We took dt small enough
so that the results do not depend on the chosen value.

Once the distribution P(i, t) is known, the density profile can be
computed for any time

r(i, t)=1 C
i

n=0
P(n, t)2 r−+1 C

L

n=i+1
P(n, t)2 r+ (14)

194 Santen and Appert



Fig. 2. Domain-wall prediction (dashed lines) vs. simulation results (solid lines) for the time
dependent density profile when b is suddenly changed at t=0 from b=0.75 to 0.25. The input
rate is fixed a=0.25 and the system size is L=100. Each profile was averaged over 100000
independent simulations. The dot-dashed line indicates the asymptotic linear density profile.

where r− and r+ are the effective densities of the left and right reservoirs,
i.e., r−=a and r+=1−b for the TASEP.

The comparison with the simulation results (see Figs. 2 and 3) shows
an excellent agreement. In case (i), the domain wall undergoes a diffusive
motion and the density profile modification scales as `t. To make the
picture more clear, beyond t=500, we show only the profiles every 500
time steps. In the long time limit, the domain wall is delocalized over the
whole system and the density profile is linear.

In case (ii), the wall has a non vanishing drift velocity, and the shift of
the density profile is linear in time, at least as long as boundaries are far
enough. This is illustrated in Fig. 4 where the first density profiles (for
100 [ t [ 500) are translated by a multiple of 100 V. The averaged wall

Fig. 3. Domain-wall prediction (dashed lines) vs. simulation results (solid lines) for the time
dependent density profile when b is suddenly changed at t=0 from b=0.75 to 0.1. The input
rate is fixed a=0.25. Profiles are plotted every 100 time steps. Each profile was averaged over
100000 independent simulations. The system size is L=100.
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Fig. 4. Same figure as 3, but with the density profiles translated by a multiple of 100 V.

velocity V is given by Eq. (2). Of course, as the wall position distribution
evolves from a Dirac function into a larger and larger gaussian, the density
profile flattens as time increases. At long times, the wall is located near the
left boundary, and the density profile is flat, apart from an exponential
boundary layer at the entrance of the system (Fig. 3).

For small systems, the agreement between domain wall theory and
simulations is not so good, as expected. However, even for a system of size
L=10, the domain wall results still indicate quite well the non-stationary
behavior, as long as the wall is far enough from the left boundary (Fig. 5).
Surprinsingly, the agreement is much better at the beginning, when the wall
is still near the right boundary. It could be linked to the fact that in the
initial condition, as the density profile is flat, the domain wall approxima-
tion (with a wall on the right of the system) is exact.

Fig. 5. Domain-wall prediction (dashed lines) vs. simulation results (solid lines) for the time
dependent density profile when b is suddenly changed at t=0 from b=0.75 to 0.1. The input
rate is fixed a=0.25. Profiles are plotted at time 0, 5, 10, 15, 20, 25, 28, 31, 34, 37, 40, and 500.
Each profile was averaged over 100000 independent simulations. The system size is L=10.
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4.2. Fluctuations in the Particle Number

So far we focused on density profiles. Now we shall show that the
domain wall picture allows also to predict the fluctuations in the total
number of particles in a dynamical regime. From the calculation in the
previous section, the time dependent probability distribution P(i, t) is
known. The fluctuations are evaluated from formulas similar to (8)–(9), but
now we replace the stationary distribution e−(L−i)/t by P(i, t). This yields

ONP(t)=Lr−+(r+−r−) C
L

k=0
(L−k) P(k, t) (15)

and

OyiyjP(t)=
r2−
N

C
i−1

k=0
P(k, t)+

r−r+

N
C
j−1

k=i
P(k, t)+

r2+
N

C
L

k=j
P(k, t). (16)

Using these expressions with the definition (7), the variance of the number
of particles can be computed numerically for any time, and compared with
the direct simulation results. Figure 6 presents such a comparison in case
(ii), i.e., for a final value b=0.1 Time has been divided by the average time
needed for the wall to cross the system, i.e., L/V where V is given by
Eq. (2). The agreement is excellent for all sizes, though for L=50, some
small finite size effects are visible.

In the early linear stage, the wall has not yet reached the left bound-
ary, and the curves superimpose for all sizes. When the wall arrives near
the left boundary, the width of the probability distribution P(i, t) scales
as `L. Thus the typical time during which domain walls reach the left
boundary in the different realizations of the system also scales as `L. As

Fig. 6. Fluctuations in the total number of particles as a function of time (rescaled by L/V).
The simulations (symbols) are compared with the domain wall estimate (black continuous
lines) with excellent agreement. The dashed line indicates the value r+(1−r+)=0.09.
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time has been rescaled by L in Fig. 6, this transient separating the linear
growth from the final stationary state tends to a sharp jump as L becomes
large.

In the final stationary state, the fluctuations within the high density
phase dominate. They can be estimated from the mean field expression
r+(1−r+)=(1−b) b=0.09.

5. CONCLUSIONS

Our results have shown that many features of the TASEP with open
boundary conditions can be understood by analyzing the domain wall
dynamics. For the stationary state, where the DW theory is known to give
exact results in the limit of large LQ., (12) we calculated the fluctuations of
the particle number for chains of various sizes. As being the integrated two-
point correlation functions the fluctuations of the particle number are
a sensitive test for the accuracy of the DW theory. We found that the
predictions of the DW theory are numerically indistinguishable from the
simulation results for L N 100.

But beyond that we also found an excellent agreement in the transient
regime. This is of particular interest, because the transient regime is out of
scope of exact solution. The perfect agreement (up to the precision of our
measurements) between simulation results and DW theory shows that the
domain wall motion determines exclusively the relaxation processes, i.e.,
the coupling to the particle reservoirs is instantaneous. For future work it
will be interesting to see whether other relaxation mechanisms are of
importance if the domains are not of a simple product measure.

In several other studies it has been shown that the DW approach
correctly predicts the phase diagram for a large number of models and
update schemes. (14, 18, 19) In general cases, where an exact solution of the
process is not possible, one has to establish the coupling to the chain and the
flow density relations numerically. However, also in this case the domain
wall interpretation is useful: First of all the parameter space is reduced dras-
tically (e.g., the bulk density corresponding to a particular input prescription
can be obtained from a single simulation run with free right boundary), and
second it allows for a better characterization of the physical behavior. (14) Let
us illustrate the latter point by the example of the Nagel–Schreckenberg
model for traffic flow with maximal velocities vmax > 1. (21) In this case one has
several possibilities to implement the in- and output of the particles. This
choice can produce even qualitatively different results for the phase diagram.
E.g., it is necessary to apply a reservoir that can achieve the full capacity of
the chain for a given model, in order to observe the maximum current phase
(see ref. 20 for a counter-example). While for the TASEP the natural input of
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particles on the first site of the chain fulfills this prerequisite, this is more
subtle for particles which can move with higher velocities. (14) The difficulties
in finding a suitable particle reservoir can be circumvented using the basic
idea of the domain wall theory for the description of the particle reservoir.
Instead of describing the capacity of the reservoirs in terms of in- and output
probabilities we recommend to describe a particle reservoir by its effective
density, i.e., by the bulk density which corresponds to a specific parameter
combination, and to calculate the phase diagram only thereafter.

Summarizing, we have shown that the DW theory is able to reproduce
the behavior of the TASEP with open boundary conditions to a large
extend, and we have used it to obtain new results for non-stationary flows.
We expect that our results can be generalized to a wide class of models for
particle transport.
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